Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Joseph P. Herres, ${ }^{\text {a }}$ Mark A.
Forman, ${ }^{\text {a }}$ Kraig A. Wheeler ${ }^{\text {b }}$ * and Glenn P. A. Yap ${ }^{\text {c }}$
${ }^{\text {a }}$ St Joseph's University, Department of Chemistry, 5600 City Avenue, Philadelphia, PA 19131, USA, ${ }^{\text {b }}$ Delaware State University, Department of Chemistry, 1200 N. DuPont Highway, Dover, DE 19901, USA, and ${ }^{c}$ University of Delaware, Department of Chemistry and Biochemistry, 201 Brown Laboratory, Newark, DE 19716, USA

Correspondence e-mail: kwheeler@desu.edu

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.059$
$w R$ factor $=0.134$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

11-(2,2-Dimethylpropyl)-12-\{2-[12-(2,2-dimethyl-propyl)-9,10-dihydro-9,10-ethenoanthracen-11-yl]-ethyl\}-9,10-dihydro-9,10-ethenoanthracene

Reaction of tert-butyllithium with 11,12-dimethylene-9,10-dihydro-9,10-ethanoanthracene and 4,5-diiodopentacyclo[4.3.0.0 $0^{2,4} .0^{3,8} .0^{5,7}$]nonane gives three products, one of which crystallizes from petroleum ether as the title compound, $\mathrm{C}_{44} \mathrm{H}_{46}$, (I). Molecules of (I) are positioned on inversion centers $\left(Z^{\prime}=0.5\right)$ in the space group $P 2_{1} / n$ and lack any discernible intermolecular interactions.

Comment

We recently attempted dehalogenation of 4,5-diiodopentacyclo[4.3.0. $0^{2,4} .0^{3,8} .0^{5,7}$]nonane at 273 K using tert-butyllithium in the presence of the trapping agent 11,12-dimethylene-9,10-dihydro-9,10-ethanoanthracene. The reaction afforded three distinct compounds as indicated from GS-MS analysis. Separation of these compounds via column chromatography and subsequent NMR investigation suggests one of the minor components is the expected Diels-Alder adduct. The major product of the reaction mixture was isolated and crystallized from petroleum ether as 11-(2,2-dimethylpropyl)-12-\{2-[12-(2,2-dimethylpropyl)-9,10-dihydro-9,10-ethenoanthracen-11-yl]ethyl\}-9,10-dihydro-9,10-ethenoanthracene, (I).

Received 28 February 2005
Accepted 24 March 2005
Online 9 April 2005

[^0]

Figure 1
The molecular structure and atom-labeling scheme of (I). Unlabeled atoms are related by the symmetry code $(2-x, 1-y,-z)$. Displacement ellipsoids for the asymmetric unit are drawn at the 50% probability level.

Figure 2
View of the molecular packing of (I), projected approximately down the a axis. H atoms have been omitted.

The asymmetric unit consists of one half-molecule of (I) positioned on an inversion center (Fig. 1). Inspection of the dihydroethanoanthracene fragment reveals the expected idealized boat conformation with a pendant orthogonally positioned [C10-C12-C13-C14 = $\left.87.3(3)^{\circ}\right]$ tert-butyl group. Fig. 2 shows the crystal structure. An interesting feature of this structure is the lack of any prominent non-bonded contacts. The absence of face-to-face $\pi-\pi$ stacking interactions and edge-to-face aromatic $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions suggests molecules of (I) assemble by favorable organization of van der Waals surfaces.

Experimental

To a solution of 4,5-diiodopentacyclo[4.3.0.0.2,4. $\cdot 0^{3,8} \cdot 0^{5,7}$]nonane $(348 \mathrm{mg}, \quad 0.9405 \mathrm{mmol})$ and 11,12-dimethylene-9,10-dihydro-9,10-
ethanoanthracene ($259.9 \mathrm{mg}, 1.1286 \mathrm{mmol}, 1.2$ equivalents) in dry heptane (11.47 ml) and diethyl ether (0.834 ml) at 195 K was added dropwise a solution of tert-butyllithium in heptane $(1.35 \mathrm{ml}, 2.2$ equivalents, $2.0691 \mathrm{mmol}, 0.53 \mathrm{M}$) under argon. The mixture was allowed to warm to 273 K , stirred at this temperature for 2 h , and quenched with methanol (6 ml). Water $(20 \mathrm{ml})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Silica-gel chromatography (gradient elution to 80:20 petroleum ether-diethyl ether) afforded pure (I) (R_{F} $=0.27,97: 3$ petroleum ether-diethyl ether), which on slow evaporation of a solution in petroleum ether yielded X-ray quality crystals (m.p. 499-500 K). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.84(s, 18 \mathrm{H}), 2.09$ $(s, 4 \mathrm{H}), 2.48(s, 4 \mathrm{H}), 4.83(s, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 6.92(m, 8 \mathrm{H}), 7.21(m$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 29.2\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{3}\right), 33.1$ (C), $44.6\left(\mathrm{CH}_{2}\right), 55.4(\mathrm{CH}), 57.6(\mathrm{CH}), 122.4(\mathrm{CH}), 122.8(\mathrm{CH}), 124.3$ $(2 \mathrm{CH}), 124.3(\mathrm{CH}), 142.1$ (C), 145.4 (C), 146.3 (C), 146.3 (C).

Crystal data

$\mathrm{C}_{44} \mathrm{H}_{46}$
$M_{r}=574.81$
Monoclinic, $P 2_{\mathrm{A}} / n$
$a=9.2450(8) \AA$
$b=10.0697(9) \AA$
$c=18.870(2) \AA$
$\beta=102.654(8))^{\circ}$
$V=1714.0(3) \AA^{3}$
$Z=2$
$D_{x}=1.114 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 52
reflections
$\theta=23.7-24.9^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless $0.44 \times 0.28 \times 0.08 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 4212 measured reflections 3136 independent reflections 1667 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$

$$
\begin{aligned}
& \theta_{\max }=25.4^{\circ} \\
& h=-1 \rightarrow 11 \\
& k=-1 \rightarrow 12 \\
& l=-22 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: }<3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.134$
$S=1.00$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0526 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.16 \mathrm{e}_{\mathrm{m}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

C4A-C10	$1.518(3)$	C9-C11	$1.535(3)$
C8A-C9	$1.525(3)$	C10-C10A	$1.518(3)$
C9-C9A	$1.523(3)$	C10-C12	$1.542(3)$
C9A-C9-C8A	$105.96(18)$	C4A-C10-C12	$106.41(19)$
C9A-C9-C11	$106.8(2)$	C10A-C10-C12	$106.45(19)$
C8A-C9-C11	$105.9(2)$	C12-C13-C14	$117.2(2)$
C4A-C10-C10A	$105.5(2)$	C11-C18-C18	$112.5(3)$

Symmetry code: (i) $2-x, 1-y,-z$.

All H atoms were treated as riding with $\mathrm{C}-\mathrm{H}$ distances of 0.93 $\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 0.96\left(\mathrm{CH}_{3}\right), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.98 \AA(\mathrm{CH})$, and with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})\left(1.5 U_{\text {eq }}\right.$ for methyl H atoms $)$. Methyl groups were allowed to rotate freely during refinement.

Data collection: XSCANS (Bruker, 1999); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve

organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X-S E E D$ (Barbour, 2001); software used to prepare material for publication: SHELXL97 and X-SEED.

Acknowledgement is made of the Donors of the American Chemical Society Petroleum Research Fund Type B and the National Science Foundation (DMR-9414042) for this crystallographic investigation. MAF thanks Saint Joseph's University for a Summer Research Grant. JPH. gratefully
acknowledges Pfizer Inc. for a Summer Undergraduate Research Fellowship (SURF).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (1999). XSCANS. Version 2.31. Bruker AXS Inc., Madison, Wisconsin, USA.
Eaton, P. E. \& Lukin, K. (1995). J. Am. Chem. Soc. 117, 7652-7656.
Glaze, W. H., Hanicak, J. E., Moore, M. L. \& Chaudhuri, J. (1972). J. Organomet. Chem. 44, 39-48
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

